Synthesis of nickel ferrite nanoparticles as an efficient magnetic sorbent for removal of an azo-dye: Response surface methodology and neural network modeling
Authors
Abstract:
In this research, nickel ferrite (NiFe2O4) nanoparticles (NFNs) are prepared through coprecipitation method, and applied for adsorption removal of a model organic pollutant, methyl orange (MO). The characterization of the prepared NFNs was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). Optimization and modeling of the removal of MO applying NFNs were performed via central composite design (CCD) and the influential parameters including nano-sorbent amount, dye initial concentration, contact time and pH were considered as input variables for CCD. A dye removal percentage of 99 % was achieved under the optimum condition established for MO removal that was in agreeing with the predicted value. Additionally, multi-layer artificial neural network (ML-ANN) was applied to acquire a predictive model of MO removal. The isothermal investigation of MO adsorption was performed by developing Langmuir, Freundlich and Temkin models, and results showed that experimental data were best fit in Freundlich model. Based on the adsorption kinetics studies, the pseudo-second-order kinetic model was the best model to describe the adsorption mechanism of MO onto NFNs.
similar resources
nano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Removal of Reactive Red195 Synthetic Textile Dye using Polypyrrole-coated Magnetic Nanoparticles as an Efficient Adsorbent
Magnetic Fe3 O4 nanoparticles modified by polypyrrole (PPy@Fe3 O4 MNPs) was synthesized by chemical co-precipitation method and used as an adsorbent for removal of cationic dyes, Reactive Red195, from aqueous solutions. The resulting products are characterized by scanning electron microscope (SEM) and FT-IR. The effects of solution pH value, adsorbent amount, adsorption time and capacity of the...
full textpreparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis
Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...
full textdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولnickel oxide nanoparticles application as an efficient adsorbent for dye removal from synthetic wastewater treatment
background: in this study, adsorbentn process performance was assessed using nickel oxide nanoparticles for wastewater treatment containing mono azo orange ii dye in a laboratory scale. methods: the effects of various factors such as adsorbent dosage, contact time, ph and initial dye concentration were investigated. findings: based on the obtained results, the optimum ph range to dye removal is...
full textMy Resources
Journal title
volume 3 issue 1
pages 109- 123
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023